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Analog of the Wigner-Moyal equation for the electromagnetic field
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The evolution equation for the Wigner distribution of the classical electromagnetic field is derived for a
nonstationary and inhomogeneous optical medium, which is formally similar to the Wigner-Moyal equation for
a quantum system. The geometric optics approximation is discussed in detail, and the conservation equation for
the number of photons is justified. The influence of dispersion is also considered.

PACS number~s!: 42.25.2p, 42.15.2i
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I. INTRODUCTION

The Wigner function was introduced in order to repres
the quantum state of a system in the corresponding clas
phase space@1#. This is a very important concept which ca
be used to establish a link between the wave and par
manifestations of the quantum fields, and it is currently u
in quantum optics@2,3#. It is also well known that the spac
and time evolution of the Wigner distribution is described
the Wigner-Moyal equation@4#, which reduces, in the clas
sical limit, to the one-particle Liouville equation.

An interesting aspect of the electromagnetic field is t
its wave and particle properties can be completely descr
in purely classical terms: the electromagnetic waves are
scribed by Maxwell’s equations, and the photon trajector
are described by the ray equations of the geometric op
approximation. It is the aim of the present work to establ
a link between these two kinds of classical descriptions
using the Wigner function of the electromagnetic field, a
by deriving the corresponding evolution equation.

Quite recently, this approach was used for the particu
case of waves propagating in a nonstationary plasma@5,6#,
where the Wigner function was used to define in gene
terms the photon occupation number, or number of phot

Nk(rW,t), for modes propagating with wave vectorkW , at a

position rW and timet, and an evolution equation was esta
lished. Actually, in Ref.@6#, the Wigner-Moyal equation wa
already derived, but it was stated in a quite implicit way, a
only for the plasma case.

Here we generalize this work in order to consider an
bitrary optical medium and to explicitly derive a gener
form of the Wigner-Moyal equation for the classical electr
magnetic field. We also show that, in the geometric op
approximation, this equation reduces to the conserva
equation for the number of photonsNk , which is formally
identical to the one-particle Liouville equation, in analo
with the above mentioned results of the quantum theory.

This paper is organized in the following way. In Sec.
we derive the Wigner-Moyal equation for the electroma
netic waves propagating in a nondispersive and nondiss
tive medium. In Sec. III, a simplified form of the Wigne
function is introduced, which is valid for a spectrum of line
waves. The evolution equation for the number of photon
derived and the geometric optics approximation is discus
PRE 621063-651X/2000/62~3!/4276~7!/$15.00
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In Sec. IV, the derivation of Sec. II is generalized for th
case of dispersive media. Finally, in Sec. V, the results
summarized.

II. NONDISPERSIVE MEDIUM

We first consider a nondispersive medium, in order
clearly state our approach. We also assume that the med
is isotropic and nondissipative. In the absence of charge
current distributions, we have, from Maxwell’s equations,

¹2EW 2¹~¹•EW !2m0

]2

]t2
DW 50, ~1!

whereDW 5e0eEW is the displacement vector. We know th
e511x, wherex is the susceptibility of the medium. As
suming, for simplicity, that the fields are transverse (¹•EW
50), we can write

¹2EW 2
1

c2

]2EW

]t2
5

1

c2

]2

]t2
~xEW !. ~2!

In general, the transverse field approximation is not va
for an arbitrary inhomogeneity. However, it is well know
that for weak inhomogeneities, where the properties of
medium vary on a scale much larger that the character
field wavelengths, such an approximation is valid, and it
commonly used in optical media and plasmas.

Now we use the notationEW i[EW (rW i ,t i) andx i[x(rW i ,t i),
for i 51 and 2, and we can write

S ¹1
22

1

c2

]2

]t1
2D EW 15

1

c2

]2

]t1
2
x1EW 1 , ~3!

S ¹2
22

1

c2

]2

]t2
2D EW 25

1

c2

]2

]t2
2
x2EW 2 . ~4!

Let us multiply the first of these equations byEW 2* , and the

complex conjugate of the second one byEW 1. Noting that, in
the absence of losses, the refractive index is always reax i

5x i* , we obtain, after subtracting the resulting two equ
tions,
4276 ©2000 The American Physical Society
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F ~¹1
22¹2

2!2
1

c2 S ]2

]t1
2

2
]2

]t2
2D GC12

5
1

c2 S ]2

]t1
2
x12

]2

]t2
2
x2D C12, ~5!

with

C125EW 1•EW 2* . ~6!

It should be noted that, forrW15rW2 andt15t2, this quantity
reduces to the square of the electromagnetic field amplitu
C12(rW15rW2 ,t15t2)5uE(rW,t)u2. For convenience, we intro
duce new space and time variables, such that

rW5 1
2 ~rW11rW2!, sW5rW12rW2 ~7!

and

t5 1
2 ~ t11t2!, t5t12t2 . ~8!

Using these variable transformations, we can easily r
ize that

S ]2

]t1
2
x12

]2

]t2
2
x2D 5S 1

4

]2

]t2
1

]2

]t2D ~x12x2!

1
]2

]t]t
~x11x2!. ~9!

This expression can be simplified by noting thatt is a fast
time scale, andt is a slow time scale, as will become mo
obvious below. Furthermore, we can assume that the sus
tibility x is a slowly varying function of time, and that it
dependence on the fast time variablet is negligible. Using
(x11x2).2x, we can then write this equation as

2S ¹•¹s2
e

c2

]2

]t]t D C12.
1

c2
~x12x2!

]2

]t2
C12

1
2

c2

]x

]t

]

]t
C12. ~10!

We know that, by making a Taylor expansion of a fun
tion of time f (t1t) aroundf (t), we can obtain

f ~ t1t!5 f ~ t !1 (
m51

`
1

m!
tm

]m

]tm
f ~ t !. f ~ t !1t

] f ~ t !

]t
1•••.

~11!

This can be written in a more elegant and more comp
form, by using an exponential operator, as

f ~ t1t!5expS t
]

]t D f ~ t !. ~12!

A power series development of this exponential opera
clearly shows that this is equivalent to Eq.~11!. Similarly, a
function of the coordinatesf (rW1sW) can be expanded aroun
f (rW) as
e:

l-

p-

-

ct

r

f ~rW1sW !5exp~sW•¹! f ~rW !. ~13!

This means that, by performing a double~space and time!
Taylor expansion of the susceptibilitiesx1 andx2 aroundrW
and t, we obtain

x15x~rW1sW/2,t1t/2!5expS sW

2
•¹1

t

2

]

]t
D x~rW,t ! ~14!

and

x25x~rW2sW/2,t2t/2!5expS 2
sW

2
•¹2

t

2

]

]t
D x~rW,t !.

~15!

The difference between the two values of the suscepti
ity of the medium can now be written as

~x12x2!52 sinhS sW

2
•¹1

t

2

]

]t
D x

52(
l 50

`
1

~2l 11!!
F sW

2
•¹1

t

2

]

]t
G2l 11

x. ~16!

At this point it is useful to introduce the double Fouri
transformation ofC12:

C12[C~rW,sW,t,t!5E dkW

~2p!3E dv

2p
F~rW,t;v,kW !eikW•sW2 ivt.

~17!

The corresponding inverse transformation is related with
electric field as shown:

F~rW,t;v,kW !5E dsWE dtC~rW,sW,t,t!e2 ikW•sW1 ivt

5E dsWE dtEW S rW1
sW

2
,t1

t

2
D •

3EW * S rW2
sW

2
,t2

t

2
D e2 ikW•sW1 ivt. ~18!

This quantity is formally quite similar to the Wigner func
tion for a quantum system@1#. Therefore we can call it the
double~or, space and time! Wigner function for the electric
field. It should be noted, however, that the usual Wign
function for quantum systems is not a double~space and
time! but a single~space! or reduced quasidistribution. A
single Wigner function for the electromagnetic field will als
be defined below.

Replacing this definition in Eq.~10!, we obtain

S ]

]t
1

c2kW

ve
•¹ DF1

] lne

]t
F5 i

v

2e
~x12x2!F, ~19!

where (x12x2) is determined by Eq.~16!. But, from the
definition of F, we conclude that
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]m

]kWm
5~2 isW !mF,

]m

]vm
5~ i t!mF. ~20!

This means that we can write, on the right-hand side of
~19!,

~x12x2!F52(
l 50

`
~21! l

~2l 11!! F1

2

]

]kW
•¹2

1

2

]

]v

]

]tG 2l 11

xF.

~21!

Replacing this result in Eq.~19! we finally obtain

S e
]

]t
1

c2kW

v
•¹ DF1S ]e

]t DF52v~e sinLF !, ~22!

where L is a differential operator, which acts both bac
wards one and forward onF. It can be defined by

L5
1←

2 F ]

]rW
•

]

]kW
2

]

]t

]

]vG→
. ~23!

The right and left arrows are used to indicate that, in b
terms, the first differential operator acts backwardly one and
the second one acts forwardly onF. The sine differential
operator in Eq.~22! is, in fact, an infinite series of differen
tial operators, according to

sinL5 (
n50

`
~21! l

~2l 11!!
L2l 11. ~24!

The result stated in Eq.~22! shows that, at the cost of suc
unusual operators, from Maxwell’s equations we were a
derive a closed evolution equation for the Wigner functionF
of the electric field. This is valid in quite general condition
apart from our basic assumptions that the medium should
nondispersive and that the dielectric constant should o
evolve on a slow space and time scale. Its relation with
geometric optics approximation will become apparent in S
III.

Equation ~22! is formally quite similar to the Wigner-
Moyal equation for quantum systems@1,4#, except for the
term on the time derivative of the refractive index, which h
no equivalent in the quantum mechanical problem. For
reason this equation can be called the Wigner-Moyal eq
tion for the electromagnetic field.

III. KINETIC EQUATION FOR PHOTONS

It is now useful to introduce a few simplifying assum
tions. The first one is associated with the character of
electromagnetic spectrum. We can assume that such a s
trum is determined by a linear superposition of waves.
each spectral component, the value of the frequencyv has to
satisfy the linear dispersion relation of the medium:

v5vk5kc/Ae. ~25!

The corresponding group velocity is
.
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vW k5
]vk

]kW
5

c

Ae

kW

k
5

c2

vke
kW . ~26!

In this case of a linear wave spectrum, the Wigner functioF
simplifies to

F[F~rW,t;v,kW !5Fk~rW,t !d~v2vk!. ~27!

Replacing this in Eq.~17!, and noting that the reduce
Wigner functionFk is independent ofv, and consequently
that

]mF

]vm
5Fk

]m

]vm
d~v2vk!5~21!md~v2vk!

]mFk

]vm
50,

~28!

we can write the Wigner-Moyal equation in a simplifie
form:

S ]

]t
1vW k•¹ DFk1

] ln e

]t
Fk52

vk

e
@e sinLkFk#. ~29!

Here,Lk is a reduced differential operator defined by

Lk5
1←

2

]

]rW
•

]→

]kW
. ~30!

Because, in the Wigner-Moyal equation, the sine opera
are usually too complicated to be explicitly calculated
specific problems, it can be useful to simply retain the fi
term in development~24!:

sinLk.Lk . ~31!

This is only valid for a slowly varying medium, where th
gradients contained in the operatorLk are very small. In
such a case, we are close to the conditions where the
metric optics approximation is valid. The Wigner-Moy
equation reduces to

S ]

]t
1vW k•¹ DFk1S ] ln e

]t DFk.2
vk

2e S ]e

]rW
•

]Fk

]kW
D . ~32!

On the other hand, if we neglect the logarithmic deriv
tive in this equation, we note that it implies that a trip
equality exists, namely,

dt5
drW

vW k

5
dkW

~vk/2e!~]e/]rW !
. ~33!

This is equivalent to stating that

drW

dt
5vW k5

]vk

]kW
, ~34!

dkW

dt
5

vk

2e

]e

]rW
5

kc

2e3/2

]e

]rW
52

]vk

]rW
. ~35!

Here we recover the ray equations of the geometric op
approximation, written in Hamiltonian form. Clearly,rW andkW
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are the canonical variables, and the frequencyvk is the
Hamiltonian function. They are nothing but the characteris
equations of the simplified version of the Wigner-Moy
equation, which can then be written as

d

dt
Fk[S ]

]t
1vW k•¹1

dkW

dt
•

]

]kW
D Fk.0. ~36!

This equation states the conservation of the Wigner func
Fk , and it is valid when the logarithmic time derivative,
well as the higher order derivatives associated with the
fraction termsl .0 in the development of the sine operat
sinLk , can be neglected.

Furthermore, by replacing Eq.~27! in the definition of
C12, we obtain

C12[C~rW,sW,t,t!

5e2 ivktE Fk~rW,t !eikW•sW
dkW

~2p!3

5e2 ivktC~rW,sW,t,t50!. ~37!

According to Eq.~18!, this simply means that we can defin
Fk(rW,t) as the space Wigner function for the electric field

Fk~rW,t !5E C~rW,sW,t,t50!e2 ikW•sWdsW

5E EW ~rW1sW/2,t !•EW * ~rW2sW/2,t !e2 ikW•sWdsW. ~38!

It is now useful to introduce the concept of the number
photonsNk(rW,t), defining it in terms of the reduced Wigne
function, as

Nk~rW,t !5
e0

8\ S ]R

]v D
vk

Fk~rW,t !, ~39!

whereR50 is the dispersion relation of the medium. Such
definition was introduced in our recent work@5,6#. As it
states, it can be applied to arbitrary forms of wave fie
~plane, spherical or cylindrical waves!. In particular, if we
take the simple case of plane waves, such thatEW (rW,t)
5EW 0exp(ikW0•rW2iv0t), this reduces to

Nk~rW,t !5
e0

8\

]R

]v
uE0u2d~kW2kW0!. ~40!

This is just the definition commonly found in the litera
ture @7,8#, which is not very useful to describe, e.g., sho
laser pulses. For the case considered here of a nondispe
medium, the dispersion relationR50 can be written as

R[R~v,kW !5e2c2k2/v250. ~41!

The expression for the number of photons@Eq. ~39!# is then
reduced to

Nk~rW,t !5
e0

4\

e

vk
Fk~rW,t !. ~42!
c

n

f-

f

s

t
ive

We can now return to the Wigner-Moyal equation~36!,
but including the logarithmic derivative of the refractive in
dex, and rewrite it as

d

dt
Fk52S ] ln e

]t DFk , ~43!

where the total derivative is determined by Eq.~36!. On the
other hand, if we take the total time derivative of the numb
of photons@Eq. ~42!#, and note that

dvk

dt
5

]vk

]t
52

vk

2 S ] ln e

]t D , ~44!

we can then obtain

d

dt
Nk5F S 1

2

]

]t
1vW k•¹ D ln eGNk . ~45!

Neglecting the slow variations of the refractive index a
pearing on the right hand side, we can finally state an eq
tion of conservation, for the number of photons, in the fo

dNk

dt
[S ]

]t
1vW k•¹1

dkW

dt
•

]

]kW
D Nk50. ~46!

This equation simply states that the number of photonsNk is
conserved. Of course, such a statement could be mad
using simple physical arguments. But the present deriva
has the advantage of using a precise and general defin
for Nk . On the other hand, we understand from it that t
conservation equation for the number of photons is o
valid when the higher order terms contained in the sine
erator of the Wigner-Moyal equation can be neglected. T
means that these terms represent diffraction correction
the geometric optics approximation.

IV. DISPERSIVE MEDIUM

The above derivation is conceptually quite interesting,
cause it establishes a clear link between the exact Maxw
equations and a kinetic equation for photons. However,
range of validity is not very wide, because we have neglec
dispersion. The generalization to the case of a disper
medium is considered in this section. For simplicity, we s
neglect the losses in the medium, which can easily be
cluded in the calculations, as discussed at the end of
section. First of all, if the electromagnetic radiation prop
gates in a dispersive medium, our starting equation~1! is
replaced by

S ¹22
1

c2

]2

]t2D EW 5m0

]2

]t2
PW , ~47!

where PW 5e0EW 1DW is the polarization vector. In genera
terms, this is related to the electric fieldEW by the integral

PW ~rW,t !5e0E drW8E dt8x~rW,t,rW8,t8!EW ~rW2rW8,t2t8!.

~48!
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Returning to the procedure followed in Sec. II, we can s
that Eqs.~3! and ~4! should be replaced by

S ¹ i
22

1

c2

]2

]t i
2D EW i5m0

]2

]t i
2
PW i ~49!

for i 51 and 2.
Again, from this we can derive an evolution equation f

the quantityC125EW 1•EW 2* . The result is

F ~¹1
22¹2

2!2
1

c2 S ]2

]t1
2

2
]2

]t2
2D GC12

5m0F ]2

]t1
2 ~PW 1•EW 2* !2

]2

]t2
2 ~PW 2* •EW 1!G . ~50!

Let us now introduce the space and time variables define
Eqs.~7! and ~8!. This equation becomes

2S ¹•¹s2
1

c2

]2

]t]t D C12

5m0S 1

4

]2

]t2
1

]2

]t2D ~PW 1•EW 2* 2PW 2* •EW 1!

1m0

]2

]t]t
~PW 1•EW 2* 1PW 2* •EW 1!. ~51!

At this point, we can introduce the Fourier transformati

EW i[EW ~rW i ,t i !5E dv i

2p E dkW i

~2pi !3
EW ~v i ,kW i !e

ikW i•rW i2 iv i t i.

~52!

A similar transformation for the polarization vector is d
fined by

PW i[PW ~rW i ,t i !5E dv i

2p E dkW i

~2pi !3
PW ~rW i ,t i ;v i ,kW i !e

ikW i•rW i2 iv i t i,

~53!

where we have

PW ~rW i ,t i ;v i ,kW i !5e0x~rW i ,t i ;v i ,kW i !EW ~v i ,kW i !. ~54!

The susceptibilityx(rW,t;v,kW ), appearing in this expres
sion, is assumed to be a slowly varying function of space
time. We can rewrite the quantityC12 in terms of the Fourier
components of the electric field. But, because this would l
to quite cumbersome expressions, we prefer to introduce
frequency and wave vector variables, such that

qW 5kW11kW2 , kW5 1
2 ~kW12kW2! ~55!

and

V5v11v2 , v5 1
2 ~v12v2!. ~56!

As in the case of the space and time variable transfor
tions @Eqs.~7! and~8!#, the Jacobian of the new transform
e

r

by

d

d
w

a-

tions is equal to 1:dv1dv25dVdv anddkW1dkW25dqW dkW . In
terms of these new variables, the quantityC12 becomes for-
mally identical to Eq.~17!, as it should, with the quantity
F(rW,t;v,kW ) now defined as

F~rW,t;v,kW !5E dV

2p E dqW

~2p!3
J~qW ,kW ,V,v!eiqW •rW2 iVt

~57!

and

J~qW ,kW ,V,v!5EW ~v1V/2,kW1qW /2!•EW ~2v1V/2,2kW1qW /2!.
~58!

Returning to Eq.~51!, and retaining on its right hand sid
only the dominant term, the one proportional to]2/]t2, we
can write

2F¹•¹s2
1

c2

]2

]t]tGC1252
1

c2E dV

2p

3E dqW

~2p!3
~h1

2h2!J~qW ,kW ,V,v!

3eiqW •rW2 iVteikW•sW2 ivt, ~59!

where, in order to simplify the expression, we have int
duced the quantities

h65S v6
V

2 D 2

xS rW6
sW

2
,t6

t

2
;v6

V

2
,kW6

qW

2
D . ~60!

Here we should note thatuvu@uVu, becausev is associated
with the fast time scalet, whereas the frequencyV is asso-
ciated with the slow time scalet. In the same way, we can
assume thatukW u@uqW u. Developing these quantities around th
values (v,kW ) and (rW,t), we obtain

h6.h06
V

2

]h0

]v
6

qW

2
•

]h0

]kW
6

t

2

]h0

]t
6

sW

2
•

]h0

]rW
1•••,

~61!

where we have considered that

h05v2x~rW,t;v,kW !. ~62!

This means that, in Eq.~59!, we can use

h12h25S V
]h0

]v
1qW •

]h0

]kW
D 1S t

]h0

]t
1sW•

]h0

]rW
D .

~63!

But we also note that the quantityh0 and its derivatives are
independent ofV andqW . This means that, in Eq.~59!, they
can be taken out of the integrals. This allows us to make
following replacements, in the same equation:

E dV

2p E dqW

~2p!3
VJ~qW ,kW ,V,v!eiqW •rW2 iVt5 i

]

]t
F~rW,t;v,kW !

~64!



e it

ent
in

ach
n to
er-

m is
can

der

the
to

hen

PRE 62 4281ANALOG OF THE WIGNER-MOYAL EQUATION FOR THE . . .
and

E dV

2p E dqW

~2p!3
qW J~qW ,kW ,V,v!eiqW •rW2 iVt52 i¹F~rW,t;v,kW !.

~65!

The result is

2F¹•¹s2
1

c2

]2

]t]tGC12

52
1

c2E dv

2pE dkW

~2p!3

3F i S ]h0

]v

]

]t
2

]h0

]kW
•¹ D F~rW,t;v,kW !

1S t
]h0

]t
1sW•¹h0DF~rW,t;v,kW !GeikW•sW2 ivt. ~66!

We can now replaceC12[C(rW,t,sW,t) by its Fourier inte-
gral, as defined by Eq.~57!, and obtain

2i S kW•¹1
v

c2

]

]t D F~rW,t;v,kW !

52
i

c2 S ]h0

]v

]

]t
2

]h0

]kW
•¹ D F~rW,t;v,kW !

2
1

c2E dsWE dtE dv8

2p E dkW8

~2p!3

3S t
]h0

]t
1sW•¹h0DC~rW,t,sW,t!

3ei (kW82kW )•sWe2 i (v82v)t. ~67!

But it is also clear that we can write

E te2 i (v82v)tdt5 i
]

]v8
E e2 i (v82v)tdt

52p id~v82v!
]

]v8
~68!

and

E sWei (kW82kW•sW)dsW52~2p!3id~kW82kW !
]

]kW8
. ~69!

This means that we can finally transform Eq.~67! into a
closed differential equation for the Wigner functionF
[F(rW,t,v,kW ), which takes the form
2vS ]

]t
1

c2kW

v
•¹ DF52S ]h0

]v

]F

]t
2

]h0

]kW
•¹F D

1S ]F

]v

]h0

]t
2

]F

]kW
•¹h0D . ~70!

After rearranging the terms in this equation, we can rewrit
in a more suitable form,

S ]

]t
1vW g•¹ DF52

2

2v1]h0 /]v
~h0LF !, ~71!

whereL is the differential operator defined by Eq.~23!, and

vW g is the group velocity defined by

vW g5
2c2kW2v2]e/]kW

2ve1v2]e/]v
, ~72!

with e511x511h/v2.
It can easily be seen that, if we use the full developm

of h6 around (rW,t), instead of the first terms, we can obta
the operator sinL instead ofL, which is a characteristic
feature of the Wigner-Moyal equation. The present appro
therefore generalizes the above derivation of this equatio
the case of a dispersive medium. Obviously, for a nondisp
sive medium, such that]h0 /]v50, this would reduce to the
result of Sec. II.

Let us assume that the electromagnetic wave spectru
made of a superposition of linear waves, such that we
use Eq.~49!: F5Fkd(v2vk). Then, Eq.~71! becomes

S ]

]t
1vW k•

]

]kW
1

1

~]v2e/]v!vk

]hk

]rW
•

]

]kW D Fk50, ~73!

wherevW k5(]v/]kW )vk
andhk5vk

2x(rW,kW ,t).
As an example of a dispersive medium, we can consi

an isotropic plasma, where we havehk52vp
2 , andvp is the

electron plasma frequency. In this case, the gradient ofhk
appearing in the last term of this equation reduces to
gradient of the electron plasma density, or equivalently,
the gradient of the square of the plasma frequency. We t
have

S ]

]t
1vW k•

]

]kW
2

1

2vk

]vp
2

]rW
•

]

]kW
D Fk50, ~74!

where vk5Ak2c21vp
2(rW,t). This is equivalent to stating

that the reduced Wigner functionFk is conserved,

d

dt
Fk[S ]

]t
1vW k•

]

]kW
1

dkW

dt
•

]

]kW
D Fk50, ~75!

because we know, from the photon ray equations, that,

dkW

dt
52

]vk

]rW
52

1

2vk

]vp
2

]rW
. ~76!
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From these reduced forms of the Wigner-Moyal equat
for a dispersive medium, we can then justify the use of

equation of conservation for the number of photonsNk(rW,t)
@Eq. ~46!#, which can also be called the kinetic equation f
photons propagating in slowly varying dispersive media.

It is well know that, due to causality, propagation in
dispersive medium always implies some wave dissipat
Our calculations are therefore only approximate, and
only be assumed to be valid if the relevant mode frequen
vk are much larger than the linear mode damping coe
cients:gk!vk . Such an approximation breaks down nea
resonance of the optical medium. In such a case, on the
hand side of Eq.~75!, we have to replace zero by the sma
quantity22gkFk .

Another limitation of the present calculation is that w
have only retained a single polarization mode where, in g
eral, there are two~for dielectric media! and three~for plas-
mas! independent polarizations. Each one would be
scribed by a Wigner-Moyal equation like Eq.~75!, to which
we could also add linear coupling terms due to the inhom
geneities of the medium. We know that such a coupling
negligible, except when the refractive index of the differe
polarization states are nearly equal. Similarly, nonlin
mode coupling terms could be added to Eq.~75! by using
perturbation methods@7,8#.

Let us also briefly comment on the extension of our c
culations to anisotropic media. In this case, the scalar qu
tity C12 would have to be generalized to a second-rank ten
Ci j 5EiEj , but the results would be comparable. This a
other generalizations of the present work will be discusse
a future work.
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V. CONCLUSIONS

It was shown in this work that an evolution equation f
the Wigner function of the classical electromagnetic field
a nonstationary and inhomogeneous medium can be deri
The simple case of wave propagation in a nondispersive
dium was considered in detail, and its generalization to
dispersive medium was also considered. For the sake of c
ity, the discussion was restricted to isotropic and nondiss
tive media, but the inclusion of anisotropy and dissipation
our calculations is straightforward.

The Wigner-Moyal equation derived here can be seen
general transport equation for the number of photons. T
work shows that, in general, the number of photons is
conserved. The validity conditions of the conservation of
number of photons, and of the geometric optics approxim
tion, are clarified, and the first order corrections associa
with diffraction are identified.

This work extends the Wigner-Moyal approach to t
case of purely classical fields, and establishes the link
tween kinetic equation for the classical particles~photons!
and the corresponding wave field equations. In that sens
can be extended to other classical fields, and can eventu
be used to derive kinetic equations for other classical p
ticles, such as~purely electrostatic! plasmons and phonons

Finally, it should be noted that the classical Wigner fun
tion for the electromagnetic field is sometimes used to ch
acterize ultrashort laser pulses with a time-dependent s
trum, as measured in optical experiments@9#. In contrast, an
evolution equation of this quantity seems to have been
nored. The Wigner-Moyal equation, in its various versio
described here, can eventually be used to understand
space-time evolution of such short pulses in an optical m
dium.
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